Slide 2

- Susan Meyer Markle
 - o Front-end analysis
 - Differences inherent in learning concepts, verbal skills, and motor skills
 - o Influences on early CBT

- Traditional educators
 - o Naïve ID
 - Looking for magic
 - o Don't understand details
- Process that creates DI programs, effective teaching machines, fluency aims, etc

- Decision
 - "We're done, completed, it will work."
 - o or tryout in class?
- If tryout
 - o Teachers report
 - o or observe firsthand?
- Criteria
 - o Some, most, or all?
- If have prereq, then program should work
- Learn *everything* teachers teaches

Slide 5

- Put our ego on the line.
- Probably lots of failure
- Decision
 - Bad kids / teachers (but program good)
 - o or take responsibility

- Redo program
- How to interpret errors?

Slides 7-

10

- New learners from intended audience
- Better, but not flawless
- Revise again
- More learners and more errors
- Work out lumps

Slides 11-

13

- Confidence in program
- Of course, can only be confident if implemented in the recommended (and tested) manner

Slides 14-

- Not "consistent with the way kids learn"
- Stifle creativity
- Too structured
- No understanding of the subject

Slides 16-

17

- Typical development sequence
- You may not be that arrogant after your first draft
- But the commercial publisher is
- Not responding to what learners like; expressing what they like

Slide 18

- Mastery of concepts very important
- Disagreement on what concept learning is

- To better teach, must "tune up" the learner's cognition
- Instruction is the proving ground of theories. Cognitive theories too broad to suggest specific detail.
- Schema theory doesn't provide any specific directions
- Sounds like a lot of details and pieces of the puzzle, but still no clear picture on what to do or what concept learning should look like.

Slides 20-

21

 Environmental perspective on concepts and conceptual learning

Slide 22

- Stimulus classes
- Generalization: give same response to new example
- Discrimination: react differently to examples and nonexamples

- Mentioning name of concept: not conceptual lesson (apple)
- Giving definition: not conceptual lesson (the usually round red or yellow edible fruit of a small tree)
- Giving an example: not conceptual lesson (see this apple)

- More than one example to illustrate concept
- Nonexamples that are almost examples
- Appropriate practice with novel examples and nonexamples

Slide 25

- Ability to spout memorized definition is not evidence of conceptual understanding (i.e. the response under the control of the full range of stimuli that should evoke the response)
- Dictionaries usually fail to pinpoint what controls response.

Slides 26-

27

 Example of difficulty in pinpointing the controlling variables

- For simplicity, we'll talk as if concepts are taught one at a time
- But, not the way we really teach

Slides 29-30

 Systematic way of picking efficient examples and nonexamples

Slides 31-

32

• Far out nonexamples

Slides 33-

34

- Find a prototype, that is the very essence of your concept.
- Discover what is essential to the concept and what is not
- Find as many properties as you can and work them over to discover whether or not they are critical

Slides 35-

40

- Critical attributes
 - If changed, becomes a nonexample

Slides 41-

- Variable attributes
 - If changed, becomes a new example
- Not quite the same as irrelevant considering their importance in teaching

- Many variable properties, some of which are unimportant
- Use salience combined with empirical testing to decide which variable attributes to include in teaching plan

Slide 49

- Close-in nonexample
- Nonexample that lacks one and only one of the critical attributes

Slides 50-53

 Minimum Rational Set of Close-In Nonexamples

> Smallest set of stimuli in which every missing critical attribute is represented across closein nonexamples

Slides 54-58

- Minimum Rational Set of Examples
 - Smallest set of stimuli in which <u>all</u> relevant dimensions of variable attributes are represented across examples
- Attributes with fewer dimensions may be reused in any way you want to put the last cases together

Slide 59

 Note of the adequacy of Minimum Rational Sets for instruction

Slide 60

 How many dimensions is enough for full variation?

 More efficient that just select the examples and nonexamples that come to mind

Slides 62-63

- Lack of agreement is not unusual
- How to handle debatable attributes?

Slides 64-66

- Far-out examples
- Example that has a variable attribute of "present" whereas all other examples are classified as "absent" or "none" for that variable attribute

- Divergent examples
 - Two examples (have all critical attributes)
 - No variable attributes in common

Slide 68

- Matched nonexample
 - 1 example, 1 close-in nonexample
 - Variable attributes match completely
 - All critical attributes but one match

Slides 69-

- When testing
 - Use novel stimuli
 - o Generalization
 - o Discrimination

Slides 79-

83

- Errors
- Overgeneralization: Incorrectly accept nonexamples
- Undergeneralization: Incorrectly reject examples

Slide 84

- If overgeneralizing
- Add more close-in nonexamples to instruction

Slides 85-

- If undergeneralizing
- Increase range of examples used during teaching
- Look for salient variable attributes you may have neglected

- May get impression to add as many examples and nonexamples as possible
- Not good idea (despite Principle of Small Steps):
 - o Frustration at pace
 - Tedious for all but the slowest learner
- Lean programmers / very tough lessons / errors pinpoint assumption
- Principle 1: Do not include instruction on any prerequisite knowledge or skill that learner could possibly already know
- Principle 2: Include only the minimum amount of practice